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Abstract
We study the q-Painlevé V equation which can be obtained from the
degeneration of the q-PVI (in the form of the asymmetric q-PIII) equation and
present its geometrical description. Based on the bilinear formulation we obtain
the equations for the multi-dimensional τ -functions of q-PV (in the form of
nonautonomous Hirota–Miwa systems) which lives in the weight lattice of the
A4 affine Weyl group. This geometrical approach furnishes in a straightforward
way the Miuras and the Schlesingers of q-PV.

PACS numbers: 0220, 0230L, 0240

The q-Painlevé V equation

Recent progress in the geometrical description of discrete Painlevé equations (Ps) has provided
us with a most efficient tool for their classification. Starting from the ‘grand scheme’ [1]
approach, which follows closely that of Okamoto [2] for continuous Ps, and the property of
self-duality [3], which holds true for most d-Ps, we have proposed a classification approach
based on affine Weyl groups [4]. These results were confirmed by the brilliant thesis of
Sakai [5], who, using a slightly different approach, managed to extend them in some cases, in
particular with the discovery of the elliptic-discrete P.

Having the frame for the classification, which is provided by the degeneration pattern
starting from the exceptional affine group E8, it is easy to spot the equations which may have
been overlooked, or, at least, which have not been the object of detailed studies. One such
example is the q-PV equation:

yn−1yn+1 = (xn − azn)(xn − zn/a)
1 − cxn

xnxn+2 = (yn+1 − bzn+1)(yn+1 − zn+1/b)

1 − dyn+1

(1)

where zn = z0q
n and a, b, c and d are constants. In fact by rescaling x, y and z one can

modify c and d , keeping their ratio constant, so there are only three parameters and one could
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normalize to cd = 1. This normalization, however, would be rather inconvenient for the
continuous limit, so we keep the present one, redundant as it is. Also note that x have only
even indices while y have only odd ones.

We must point out that q-PV equation (1) should not be confused with the ‘standard’ [6]
q-PV equation:

(xnxn+1 − 1)(xnxn−1 − 1) = (xn − a)(xn − 1/a)(xn − b)(xn − 1/b)

(1 − cxnzn)(1 − xnzn/c) . (2)

The latter is just a symmetric version of a much richer system [7], the continuous limit of which
is PVI, as we have shown in [8]. Equation (1) was first derived in [9] as an asymmetric extension
of q-PII [10]. (The form asymmetric is understood here in the QRT [11] terminology.) This
symmetric q-PII is obtained by setting in (1) b = a, d = c (the latter can then be scaled to
any value, 1 for instance) in which case the y are just odd-numbered x. However there exists
another more direct approach based on the degeneration pattern we mentioned above. Equation
q-PV can be obtained from the degeneration through coalescence of the q-PVI (asymmetric
q-PIII) equation [12] introduced by Jimbo and Sakai:

yn−1yn+1 = (xn − azn)(xn − zn/a)
(1 − cxn)(1 − f xn)

xnxn+2 = (yn+1 − bzn+1)(yn+1 − zn+1/b)

(1 − dyn+1)(1 − gyn+1)

(3)

where zn = z0q
n and a, b, c, d , f and g are nonzero constants satisfying the constraint

cf = dg. Taking the limit f → 0, g → 0 we obtain indeed equation (1). From the relation of
q-PV to equation (3) it is clear that one can obtain its Lax pair by implementing the appropriate
limit on the Lax pair of (3) presented by Jimbo and Sakai. The reason equation (1) is called
q-PV is based on the continuous limit. Taking q = 1 + ε, y = x + z + O(ε), a = 1 + εa1,
b = −1 + εb1, c = εc1 + ε2c2 and d = −εc1 + ε2c2 we find indeed at ε → 0 for the quantity
w = y/x

w′′ = w′2
(

1

2w
+

1

w − 1

)
− w′

z
+
(w − 1)2

z2

(
a2

1

2
w − b2

1

2w

)
− c2w

z
− c2

1w(w + 1)

8(w − 1)
(4)

i.e. PV in canonical form.
We now turn to the geometrical description of q-PV.

The A4 weight lattice and its geometry

From the geometrical description of discrete Ps we have presented in [3, 7], it has become
clear that the pertinent space is the weight lattice of some affine Weyl group, i.e. the dual of
the root system. It turns out that for the q-PV equation we are analysing in this paper the space
we must consider is the one associated with A4. Although this space is invariant under the
action of the symmetries of A4 there exists no way to define an invariant orthonormal basis
for the weight lattice. We could of course have used a noninvariant (non-normal) orthogonal
basis, just as we did in [7], but instead here we choose to use a description within a five-
dimensional space, or rather a hyperplane of such a space. Taking the hyperplane of Z

5 where
the sum of all coordinates vanishes, we can describe the points of the weight lattice of A4,
where the τ -functions live. These points are generated by the five vectors (only four of which
are independent) having one coordinate equal to 4 and the four others equal to −1. One can
normalize our space by deciding that the norm of a unit vector in any of the five directions of Z

5

is 1/
√

20, so our basic vectors have length 1. Note that the sum of the five basic vectors is zero,
and the dot product of any two distinct ones is −1/4. This choice allows us to consistently
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orient them. The weight lattice, thus, consists of all points in Z
5 that satisfy the following

conditions:

• the sum of all coordinates is zero and
• all five coordinates are congruent to each other with respect to 5.

The origin does satisfy these requirements. In the case ofA4 its nearest neighbours (NNs)
are just the endpoints of the five basic vectors (and their opposites). Though the adjective
‘nearest’ is not appropriate for these vectors, which are actually the smallest ones, we will call
them NVs for ‘nearest-neighbour-connecting vectors’, a shorthand the reason for which will
soon become obvious. Having established that each τ has 10 NNs, we turn to next-nearest-
neighbours (NNNs). These can be reached by moving away from this τ by a vector which is as
small as possible a sum of NVs. This turns out to be the case if we add two NVs since their dot
product is negative, namely −1/4. So the squared length of such a next-nearest-neighbour-
connecting vector NNV is 3/2. There are just ten such consistently oriented vectors, of the
form (3, 3,−2,−2,−2), where of course the two 3s can be at any two positions. There are
20 NNNs of the origin, at the endpoints of these ten vectors and their opposites. The difference
of two NVs has squared length 5/2, a typical one being (−5, 5, 0, 0, 0). There are also ten
such vectors, up to a sign, but note that these cannot be consistently oriented. They connect τ
in next-next-nearest-neighbour (NNNN) positions. Any of these NNNVs is the difference of
exactly one pair of NVs, (e.g. (−1, 4,−1,−1,−1) and (4,−1,−1,−1,−1) for the NNNV
(−5, 5, 0, 0, 0)mentioned above), and it is orthogonal to the other three NVs. So by adding to
it (in either orientation) any of the latter we obtain vectors of squared length 7/2. However, we
obtain only 30 rather than 60 such vectors since each is obtained in two such ways. In fact these
squared length 7/2 vectors are the sum of two distinct NVs, minus a third one distinct from the
first two. These vectors can be consistently oriented and a typical one is (−6, 4, 4,−1,−1).

The bilinear form of the q-PV

We start by introducing the nonlinear variables (for which we will use the symbols X or Y )
and assume that they are defined at points of the lattice which are midpoints between one τ
and one of its NNNs, or equivalently one τ and one of its NNNNs (and, also, the midpoint of
vectors of squared length 7/2). Indeed, if we take one τ and any two of its NNs (which are
either in NNN or NNNN respective position depending on whether we move along NVs of the
opposite or same orientation) and complete the parallellogram (in fact a rhombus), the centre
of this rhombus is the site of our nonlinear variable. The short (squared length 3/2) and long
(squared length 5/2) diagonals define two pairs of τ which are uniquely defined for each such
site. A typical site can be (−3, 2, 2,− 1

2 ,− 1
2 ), for instance. The pair of τ in NNN relative

position around it is {(−4, 1, 1, 1, 1), (−2, 3, 3,−2,−2)} while the pair in NNNN position
is {(−3, 2, 2, 2,−3), (−3, 2, 2,−3, 2)}. Note that, on purpose, we chose this point so that
its squared distance to the origin is neither 3/8 nor 5/8 but 7/8, so it is also the midpoint
of a vector of length 7/2 originating at the origin, namely the one mentioned at the end of
the paragraph above. Moreover there are exactly two more pairs of τ of squared distance 7/2
such that our site is their midpoint, namely {(−1, 4,−1,−1,−1), (−5, 0, 5, 0, 0)} and the one
obtained from it by permuting the second and the third coordinates of both sites.

The next step is to relate the nonlinear variable X to the τ . Each X, at the centre of a
rhombus, is the ratio of the product of the τ at the end of the long diagonal to the product of
the τ at the end of the short diagonal. For instance

X

(
−3, 2, 2,−1

2
,−1

2

)
= τ(−3, 2, 2, 2,−3)τ (−3, 2, 2,−3, 2)

τ (−4, 1, 1, 1, 1)τ (−2, 3, 3,−2,−2)
. (5)
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We can also use the three pairs of τ separated by a distance of square 7/2 and having X as
midpoint to find more expressions ofX. For any of these three pairs one can expressX in terms
of the product of these τ and the product of the τ in NNN relative position. From previous

experience we expect this relation to depend explicitly on the position vector
−−→
O ′X (note here

that the origin O ′ of this vector need not coincide with the origin of coordinates: it may well
be shifted by five arbitrary numbers of zero sum), through its dot product with a characteristic
vector of the equation. In this case, however, contrary to all previously studied ones, there are
two oriented vectors in the problem, one that depends only on X, namely the one relating the
two τ in NNN position (the vector relating the two τ in NNNN position cannot be consistently

oriented and thus its dot product with
−−→
O ′X may not appear) and a further one that depends

on the particular pair considered, i.e. the relevant squared length 7/2 vector. In order to make
things clearer we take a specific example. Around X(−3, 2, 2,− 1

2 ,− 1
2 ) let us denote by A

the quantity
−−→
O ′X · −−−−−−−−−−−−→

(−2,−2,−2, 3, 3) where the second vector is the one joining the two sites
in NNN position. We have for instance the pair of points (0, 0, 0, 0, 0) and (−6, 4, 4,−1,−1)

at squared distance 7/2. Let us denote by B the relevant quantity
−−→
O ′X · −−−−−−−−−−−−→

(−6, 4, 4,−1,−1),
the latter vector being positively oriented. We thus expect

X

(
−3, 2, 2,−1

2
,−1

2

)
= QαA+βB τ(0, 0, 0, 0, 0)τ (−6, 4, 4,−1,−1)

τ (−4, 1, 1, 1, 1)τ (−2, 3, 3,−2,−2)
−QγA+δB (6)

for some Q and appropriate values of α, . . . , δ (of course an overall scaling of the latter
coefficients can be absorbed in the definition ofQ). Similar equations can be obtained for the
two other choices of pair of two τ at squared distance 7/2 around X(−3, 2, 2,− 1

2 ,− 1
2 ) with

the same A but different Bs for each pair.
Comparing (5) to (6) allows us to obtain equations relating the product of the two NNN

τ , the product of the two NNNN τ and the product of two τ at squared distance 7/2 around
the same point. These equations are nonautonomous Hirota–Miwa [13] equations, the general
form of which is

τNNNNτNNNN = Q
−→
O ′X·(α−→NNV+β−−→τ−τ+)τ−τ+ −Q−→

O ′X·(γ−→NNV+δ−−→τ−τ+)τNNNτNNN (7)

where
−−→
NNV is the positively oriented NNV relating the two τ in NNN position around X and

(τ−, τ+) form any of the three pairs at squared distance 7/2 around X such that the vector
joining them in this order is positively oriented.

This system is highly overdetermined, and thus one may wonder whether it is consistent.
Clearly, it will be consistent only for the appropriate values of α, . . . , δ. By implementing
the consistency requirement we find two independent constraints, which can be, for instance,
written as

α − β − 2γ = 0 2β − γ − δ = 0. (8)

The existence of only two constraints, rather than three, is surprising. In fact we expected
the consistency requirement to determine completely the ratios of the quantities α, . . . , δ (as
we remarked above, an overall factor can be absorbed in Q). It turns out that the reason why
only two constraints appear is the existence of a gauge transformation of the τ that leaves the
overall picture invariant but modifies the values of the α, . . . , δ. This gauge is τni → Qκ n

3
i τni

where the ni are the five coordinates of the site of this τ in (the relevant hyperplane of) Z
5.

The existence of such a ‘cubic’ gauge seems to be rather special to A4. In most other Weyl-
group-based grand schemes we studied before [3,7], such a gauge could not be invariant under
all the symmetries of the group. Of course this gauge also changes the definition of X but
this will be absorbed in the relation (that we have not yet given) between the X variable of (5)
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and the x variable appearing in (1). Using the gauge, we can for instance choose β = 0, and,
normalizing δ to 1, we have γ = −1, α = −2. We can rewrite (7) as

τ−τ+ = Q2
−→
O ′X·−→NNVτNNNNτNNNN +Q

−→
O ′X·(−→NNV+−−→τ−τ+)τNNNτNNN. (9)

The system of equations (9) describes completely the evolution of the multivariable τ -function
in A4. They are, in fact, the bilinear forms of the q-PV equation.

Contiguity relations and the nonlinear equations

We proceed now to derive the nonlinear evolution equations for the variable X introduced
above. In what follows, whenever there is no ambiguity, we will use the name of a nonlinear
variable to mean the point where this variable is defined.

The NNNV, long diagonal of the rhombus of centre X, is orthogonal to three NVs. So
the vector joining one of its endpoints to the point obtained by translating the other endpoint
by any of these three NVs has squared length 7/2. Its midpoint is thus the location of some
nonlinear variable, say Y . By construction, the vector

−→
XY is half the corresponding NV. There

are thus three directions along which X has neighbours at distance 1/2. Of course X has
such a neighbour in both orientations for each direction, so there are six altogether. Still,
the orientation is consistently defined so we can distinguish positively shifted and negatively
shifted Y s. So Y +

1 = (−1, 3
2 ,

3
2 ,−1,−1), Y−

1 = (−5, 5
2 ,

5
2 , 0, 0), and similarly for the indices

2 and 3 which refer to the order of the coordinate of value 4 in the NV. (It turns out that,
in that case, it is indeed the three first which are relevant since the NNNV through X is
(0, 0, 0, 5,−5).) By construction, both the endpoints of the NNNV around X belong to pairs
of τ at square distance 7/2 around each of the Y (indeed we just defined Y as the midpoint of
one diagonal of a rectangle constructed on this NNNV, but it is of course also the midpoint of
the other diagonal). This fact is not immediately useful to us, but since X and Y play exactly
the same role, it follows that one can predict that the endpoints of the NNNV through each Y
belong to the pairs of τ at square distance 7/2 aroundX. For instance, for Y +

1 the NNNV relates
(−1, 4,−1,−1,−1) to (−1,−1, 4,−1,−1), and for Y−

1 , (−5, 5, 0, 0, 0) and (−5, 0, 5, 0, 0),
all four of these points being at squared distance 7/8 from X. By inspection, one can check
that the (oriented) NNV around, say, Y−

1 , relates (−4, 1, 1, 1, 1) to (−6, 4, 4,−1,−1). So

Y−
1 = τ(−5, 5, 0, 0, 0)τ (−5, 0, 5, 0, 0)

τ (−4, 1, 1, 1, 1)τ (−6, 4, 4,−1,−1)
. (10)

Similarly, we have for Y +
2 at (− 7

2 , 4,
3
2 ,−1,−1)

Y +
2 = τ(−1, 4,−1,−1,−1)τ (−6, 4, 4,−1,−1)

τ (−5, 5, 0, 0, 0)τ (−2, 3, 3,−2,−2)
(11)

the two τ in the numerator being among the six at squared distance 7/8 of X. Computing the
product Y−

1 Y
+
2 we find, after some simplifications,

Y−
1 Y

+
2 = τ(−5, 0, 5, 0, 0)τ (−1, 4,−1,−1,−1)

τ (−4, 1, 1, 1, 1)τ (−2, 3, 3,−2,−2)
. (12)

We can recognize that the denominator is just that of X and both τ at the numerator form a
pair at squared distance 7/2 of midpointX. We can now use equation (9) aroundX to express
the numerator of the above expression, and find

Y−
1 Y

+
2 = Q2AX +QA+

−→
O ′X·−−−−−−−→

(4,4,−6,−1,−1) (13)

with the same A as in (6). This is a contiguity relation in the isosceles triangle Y−
1 XY

+
2 in

which the summit X plays a special role. Note that the angle at summit X is acute, having a
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cosine equal to 1/4, since it is the angle of one positively oriented NV to a negatively oriented
one. We have similar Miura relations in the triangles Y−

3 XY
+
2 and Y−

3 XY
+
1 :

Y−
3 Y

+
2 = Q2AX +QA+

−→
O ′X·−−−−−−−→

(−6,4,4,−1,−1) (14)

where the last dot product is just what we called B just above, and similarly

Y−
3 Y

+
1 = Q2AX +QA+

−→
O ′X·−−−−−−−→

(4,−6,4,−1,−1). (15)

By multiplying together, side by side, equations (13) and (15), and dividing by (14) we find
the equation

Y−
1 Y

+
1 = Q2A(X +QC−A)(X +QD−A)

X +QB−A (16)

with obvious definitions for C,D. Note that the NV along the direction
−−→
XY1, namely−→

U ≡ −−−−−−−−−−−−−−→
(4,−1,−1,−1,−1), has the same dot product 1 with the two vectors of squared

length 7/2 entering C and D and moreover it is just their half-sum. Its dot product with the
one entering B is −3/2, and its dot product with the NNV entering A is −1/2.

One can obtain a similar relation around Y +
1 , relating this point to X and the point X++

obtained by translating X by the full NV
−→
U . Note that we denote this point with two upper

indices + since it is the translation of Y +
1 by the elementary propagation step, namely one-

half
−→
U . We find around Y +

1 the NNV
−−−−−−−−−−−−→
(−2, 3, 3,−2,−2) and three new vectors of squared

length 7/2 but the dot products with
−→
U are the same in the objects appearing in numerator and

denominator respectively. Formally

XX++ = Q2E(Y +
1 +QG−E)(Y +

1 +QH−E)
Y +

1 +QF−E . (17)

Since the lattice is invariant by translation by any full NV, the equations around the translation
of X or Y +

1 by any multiple of
−→
U have exactly the form of (16) or (17) respectively, with the

same squared 7/2 vectors. The only difference is in the position vector, which is incremented
by integer multiples of the unit length vector

−→
U . So in the equation around X++, say, the

increments of A, B, C and D are −1/2, −3/2, 1 and 1 respectively compared to their values
around X. The same will be true of E, F , G and H respectively if we go to the point Y +++

1
instead of Y +

1 .
We now introduce the variable transformation

X = xQ(3B−A)/4 Y1 = yQ(3F−E)/4 (18)

where theA, Bs etc must be considered as the dot product of the position vector fromO ′ to the
point considered, with the appropriate NNVs or squared length 7/2 vectors. Then equation (16)
becomes

Y−
1 Y

+
1 = Q(5A+B)/2 (x +QC−3(A+B)/4)(x +QD−3(A+B)/4)

Q(3A−B)/4x + 1
. (19)

Since Y−
1 and Y +

1 are symmetrical with respect to X, the renormalization factor of the lhs is

the dot product of 2
−−→
O ′X with the vector that determines (3F − E)/4, but, since 3F − E is

determined by the same vector
−−−−−−−−−−−−−−−→
(−16,−6,−6, 14, 14) as 5A + B, this factor cancels out with

the factor on the rhs, and we obtain

y−y+ = (x +QC−3(A+B)/4)(x +QD−3(A+B)/4)

Q(3A−B)/4x + 1
. (20)
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Similarly, (17) becomes

xx++ = (y+ +QG−3(E+F)/4)(y+ +QH−3(E+F)/4)

Q(3E−F)/4y+ + 1
. (21)

Equations (20) and (21) are valid not only around the specific points, x and y+ respectively, but
at all points of the lattice obtained from the latter through translations by an integer multiple
of the NV

−→
U . This is ensured by the definitions of A, B, . . . ,G which were appropriately

made above. We can remark here that the quantities 3A − B and 3E − F that appear in the
denominators of (20) and (21) are invariant under translation by multiples of

−→
U , while the

quantities appearing in the numerators increase by 5/2 upon translation by one
−→
U . Moreover

the sum of the quantities appearing in the exponents in each numerator is the dot product of
the relevant position vector with exactly 5

−→
U . We can thus introduce the independent variable

n, related to the number of steps of one half
−→
U , so the xs and the ys have indices of different

parities. Denoting by zn the quantity Q
5
2
−→
O ′X·−→U (or Q

5
2
−→
O ′Y1·−→U ) we have zn = z0q

n provided
we choose q = Q5/4. We thus recover exactly equations (1)

yn−1yn+1 = (xn − azn)(xn − zn/a)
1 − cxn

xnxn+2 = (yn+1 − bzn+1)(yn+1 − zn+1/b)

1 − dyn+1

provided we denote by a, b, c and d the constant quantities −Q(C−D)/2, −Q(G−H)/2,
−Q(3A−B)/4 and −Q(3E−F)/4 respectively. With the choices we have made it turns out that
cd = 1, but this is not invariant under a coordinate transformation.

The oblique equation

Equation (1) is not the only one that can be found on this space. Other pathways can be
considered, leading to more equations. For instance, after moving from Y−

1 to X by one-half−→
U , instead of going in the same direction to Y +

1 one could go from X to Y +
2 with one-half

of the NV with component equal to 4 in second position. The relation between these three
points has already been given as equation (13). The point Y +

2 has half-integer coordinates at
positions 1 and 3, so the direction of

−→
U as well as the one with 4 in the third position are not

allowed, but we can use an NV with 4 in the fourth or fifth position (or second, of course, but
we do not want to keep going in the direction from which we arrived). Let us choose the fifth.
We thus reach the point V ++ = (−4, 7

2 , 1,− 3
2 , 1). Now this point is not the translation of the

point Y−
1 we started from by a full number of NVs. Indeed the integer/half-integer characters

of the coordinates of third and fourth positions are interchanged but that of the coordinates
of first, second and fifth positions is the same as for Y−

1 . So from V ++ the direction
−→
U is

again allowed, and we reach (−2, 3, 1
2 ,−2, 1

2 ), from which the direction with the 4 in second
position is allowed, leading to (− 5

2 , 5, 0,− 5
2 , 0). Finally from the latter point the direction

with 4 in the fifth position is again allowed, to (−3, 9
2 ,− 1

2 ,−3, 2). This point is the translation
of the point Y−

1 we started from, by a full number of NVs, namely the vector (2, 2,−3,−3, 2).
This is a negatively oriented NNV, as expected since the sum of three distinct NVs is just
the opposite of the sum of the two others. From then on the same motion can be repeated
indefinitely, since the lattice is invariant under this translation. This trajectory in the lattice
has an approximate threefold periodicity, present in the motion along the three directions 1, 2,
5, 1, 2, 5, etc, but the exact periodicity is of order 6. Here to avoid proliferation of names of
variables we call them all x and with the appropriate change of variables (different from (18):
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for instance, X = xQ
−→
O ′X·−−−−−−−→

(4,4,−6,−1,−1)−A) we obtain

xn−1xn+1 = znq
φn(xn + 1). (22)

The overall propagation direction, of course, is given by the negatively oriented NNV
(2, 2,−3,−3, 2), but there are six steps of n in one full period. We find that zn = z0q

n

where here one should take q = Q−5/12. The phase φn has the form φn = p(−1)n + rjn + tj 2n

with j a cube root of unity and p, r, t three arbitrary constants depending on the position ofO ′.
One sees that the exact periodicity of φ is of order 6. There is however an underlying partial
symmetry of order 3, reflecting that of the propagation direction at each step. The underlying
period 2 symmetry is related to the integer/half-integer characters of the coordinates of positions
3 and 4. This equation was first presented in [9] where the connection with equation (1) was
already announced (but without explicit proof).

Summary

In this paper we have analysed the q-PV equation

yn−1yn+1 = (xn − azn)(xn − zn/a)
1 − cxn

xnxn+2 = (yn+1 − bzn+1)(yn+1 − zn+1/b)

1 − dyn+1

and its geometrical structure. The τ -function for this discrete Painlevé equation is a multi-
dimensional object depending on the independent variable and the parameters of the equation

τ(n; a, b, c, d)
with one constraint between the parameters, for instance cd = 1. The τ -function lives in
a four-dimensional space which is that of the weights of the affine group A4. The bilinear
formalism led (as is expected in a ‘grand scheme’ formulation) to a bilinear form of q-PV as
a system of nonautonomous Hirota–Miwa equations of the general form

τ+τ− = λαττ + λβτ̃ τ˜
where the ‘bar’ and ‘tilde’ indicate two orthogonal directions in the lattice (up and down
positions meaning opposite directions of evolution). The parameters α and β depend linearly
on n and the parameters of the equation. Introducing the nonlinear variables we obtained the
Miura relations which relate three variablesX, Y,W which occupy the vertices of an isosceles
triangle, with X at the summit. The general form of the Miura is

YW = λγX + λδ

where γ and δ also depend linearly on n and the parameters of the equation. In order to obtain
the evolution equations one must combine three of these triangles (which do not lie on the same
plane) and eliminate the auxiliary variable, say W . The final form of q-PV is obtained with
the appropriate gauge of x, y and the introduction of the independent variable z depending
exponentially on n. The geometrical approach introduced in this paper made also possible the
derivation of an equation that lives in the same space but follows a different evolution path.
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Commun. Math. Phys. at press
[8] Ramani A, Grammaticos B and Ohta Y 1996 The Painlevé of discrete equations and other stories CRM
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